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Set Systems

Definition
Let X be a set and S C P(X). We call the pair (X,S) a set system.
Definition
Given A C X, define
SNA={BnA:BeS}
We say A is shattered by S iff: SN A =P(A).
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The Shatter Function and VC Dimension

Definition
The function 7g : w — w given by

s(n) = max{|SNA|: A e [X]"}
is called the shatter function of S.

Definition
The Vapnik-Chervonenkis (VC) dimension of S is

VC(S) = sup{n < w : S shatters some A € [X]"}
=sup{n < w:ms(n) =2"}.
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Example: X =R, S = Half-Spaces

VC(S) > 2:
< } . . L
L | O ) . >
< o o— >
< ° —o >
VC(S) < 3:
« o O o »
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Example: X = R?, S = Half-Spaces
VC(S) >3

VC(S) < 4:
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The Sauer-Shelah Lemma
Let X be a set and S C P(X).

Lemma (Sauer-Shelah)
If VC(S) = d < w, then for all n > d, we have

ms(n) < (g) +ot (Z) = o(n%).

Proof: Suppose VC(S) = d < w, and fix n > d.
Let A € [X]" such that |S N A| = 7ms(n), and let (a1, ..., a,) enumerate A.
Inductively define Sy, ...,S, C P(A) as follows:

Let So =SNA.

To construct Sjt1, remove aj11 where possible; i.e,
S;+1 = {B : Be S,‘ and B\{a,-+1} S S,}
U {B\{ait1} : B€ Siand B\{aj;1} ¢ Si}.
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Example: S =S NA.

A={ a a» as ay as }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 1 1 0
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Example: Constructing S;.

A={ a a» as ay as }

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0
= 1 0 0 1 0 <«

1 1 1 1 0
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Example: Constructing S ..

A={ a a» as ay as }
0 0 0 0 0
0 0 0 0 1
— 0 0 0 1 0 <«
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
= 1 0 0 1 0 <«
1 1 1 1 0
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Example: Constructing ;...

A={ a a» as ay as }
0 0 0 0 0
0 0 0 0 1
— 0 0 0 1 0 <«
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
= 1 0 0 1 0 <«
1 1 1 1 0
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Example: Constructing Sj....

A={ a a» as ay as }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
= 1 1 1 1 0 =
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Example: Constructing S;.....

A={ a a» as ay as }

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

1 0 0 1 0
= 0 1 1 1 0 <«
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Example: Constructing S;......

A={ o a» as ay as }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
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Example: Constructing So.

A= { al ar as ds ds }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
= 0 1 0 0 0 <«
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
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Example: Constructing S,..

A:{ al ar as ds ds }
— 0 0 0 0 0 «+
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
= 0 1 0 0 0 <«
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
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Example: Constructing S...

A:{ al ar as ds ds }
— 0 0 0 0 0 «+
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
= 0 1 0 0 0 <«
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
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Example: Constructing Ss....

A= { al ar as ds ds }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
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Example: Constructing Ss.

A= { ai an as =2 ds }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
= 0 0 1 1 1 <«
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0

Roland Walker (UIC) VC Dimension, VC Density, & Sauer-Shelah 2017 19 / 72



Example: Constructing Ss..

A= { ai an as =2 ds }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
= 0 0 0 1 1 <«
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
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Example: Constructing Ss...

A= { ai an as =2 ds }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 0 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
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Example: Constructing S;.

A= { ai an as dg ds }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 0 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 0 0
0 1 1 1 0
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Example: Constructing Ss.

A={ a ai az as as }
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 0 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 0 0
0 1 1 1 0
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Back to proof...

Lemma (Sauer-Shelah)
IfVC(S) = d < w, then for all n > d, we have

rs(n) < (g) 4ot (Z) = O(n9).

Proof (continued):

Notice that after stage i + 1, we have the following:

o |Siy1| = ISil.
o Given A’ C A, if S;;1 shatters A, then S; shatters A'.
e Given Be€ S;41 and B C BN{a1,...,ai+1},
B'U(B\{a1,...,ai+1}) € Sit1.
Because of this, any member of S, has cardinality at most d. O
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VC Density
Definition
The VC density of S is

VC(S) = inf {r € R>O : 7T8(n) = O(nr)} = IimSUp |Og 7'('(’7).
nsw logn

Lemma (Sauer-Shelah)
If VC(S) = d < w, then for all n > d, we have

rs(n) < (g) +ot (Z) = O(n9).

Corollary
ve(S) < VC(S).
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Example: When S is “uniform,” VC dimension and VC
density agree.

Let X be an infinite set and S = [X]=9 for some d < w.

We have

SO
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Example: VC dimension is more susceptible to local
anomalies than VC density.

Let X =w,m <w, and § = P(m).

It follows that

(n) 2" if n<m
7T =
s 2m otherwise.
So
VC(S) =m
and
m
ve(S) = limsup log 2" _

n—w logn
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The Dual Shatter Function

Definition

Given Ay, ..., A, C X, let S(Ay, ..., An) denote the set of atoms in the

Boolean algebra generated by Aj, ..., A,. That is

S(A1, -, Ay) = {ﬂA‘I.’(i):ae "2}\@
i=1

where A} = A; and A? =X\ A.

Definition

The function 75 : w — w given by
m5(n) = max{|S(A1, ..., An)| : A1,...A, € S}
is called the dual shatter function of S.
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Dual VC Dimension and Dual VC Density

Definition
The dual VC dimension of S is
VC*(S) =sup{n <w:mg5(n)=2"}.
Definition
The dual VC density of S is
ve*(8) = inf {r e R>?: w%(n) = O(n")} .
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Example: X =R, & = Half-Spaces

VC*(S) > 1.
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Example: X = R?, S = Half-Spaces
VCH(S) > 2
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Example: X = R?, S = Half-Spaces
VCH(S) < 3
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Set Systems in a Model-Theoretic Context
Consider a sorted language £ with sorts indexed by /.
Let M be an L-structure with domains (M; : i € /).
Definition

Given an L-formula ¢(x, y) where x = (x{l, .y x5)and y = (yljl, ...,ytj*),
define

Sy ={9(X,b): be Y}
where X = M x --- x M and Y = M, x --- x M.

It follows that (X,S,) is a set system. To ease notation, we let:

Ty denote 7s,, VC(¢) denote VC(Sy), and  vc(¢) denote ve(Sy).

Similarly, we use 7, for TS, VC*(¢) for VC*(Sy), and vc*(¢) for ve*(Sy).
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The dual shatter function of ¢ is really counting ¢-types.
By definition, we have 7} (n) = max {|S(¢(X, b) : b € B)|: B €[Y]"}.

Let B € [Y]". Recall that

S(¢(X,b): be B) = {ﬂ 7N (X, b) o € 52} \ @.

beB
There is a bijection
S(¢(X,b) : be B) — {tpy(a/B) : a € X} = 54(B)

given by
M #" (X, b) — {qb"(b)(x, b):be B}.

beB

It follows that
1S(¢(X,b) : b€ B)| =[Sy(B)|-
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The Dual of a Formula

Definition
We call a formula ¢(x; y) a partitioned formula with object variable(s)
x = (x1, ..., Xs) and parameter variable(s) y = (y1, ..., yt)-

Definition

We let ¢*(y; x) denote the dual of ¢(x;y), meaning ¢*(y; x) is ¢(x;y)
but we view y as the object and x as the parameter.

It follows that
Sp = {6"(Y,a): 2 € X}
={¢(a,Y):ae X}.
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The shatter function of ¢* is also counting ¢-types.

By definition, we have 74+(n) = max {|Sg- N B| : B € [Y]"}.

Let B € [Y]". It follows that
Sp» NB={¢"(B,a):ac X}
={¢(a,B):a e X}
There is a bijection
{9(a,B) : 2 € X} —> {tpy(a/B) : 2 € X} = S,(B)
given by
#(a, B) — tpy(a/B).

It follows that
S+ N B| = |S4(B)].
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Duality in a Model-Theoretic Context

Lemma

The dual shatter function of ¢ is the shatter function of ¢*.
That is w; = Tgx.

Proof: For all n < w, we have

my(n) = max{|S(#(X, b) : b€ B)|: B [Y]"}
— max{[S,(B)| : B € [V]"}
=max{|Sg- N B|: B € [Y]"}
= 74 ().

Corollary

VC*(9) = VC(9*) and ve*(6) = ve(4").
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VC(¢) < w <= VC'(¢) <w

Lemma

VC(¢) < 2VC @)+,

Proof: Suppose VC(¢) > 2", there exists A € [X]?" shattered by Sy.

Let {a, : J C n} enumerate A.

For all i < n, let b; € Y such that M = ¢(ay, b)) < i€ J.

Let B = {b;j:i < n}.

It follows that Sy- shatters B, so VC(¢*) > n. O
Corollary

VC*(¢) < 2VC@)+1,

Corollary
VC(¢) < w <= VC*(¢) < w.
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The Dual Shatter Function

Definition

Given Ay, ..., A, C X, let S(Ay, ..., An) denote the set of atoms in the

Boolean algebra generated by Aj, ..., A,. That is

S(A1, -, Ay) = {ﬂA‘I.’(i):ae "2}\@
i=1

where A} = A; and A? =X\ A.

Definition

The function 75 : w — w given by
m5(n) = max{|S(A1, ..., An)| : A1,...A, € S}
is called the dual shatter function of S.
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Dual VC Dimension and Dual VC Density

Definition
The dual VC dimension of S is
VC*(S) =sup{n <w:mg5(n)=2"}.
Definition
The dual VC density of S is
ve*(8) = inf {r e R>?: w%(n) = O(n")} .
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Example: X =R, & = Half-Spaces

VC*(S) > 1.
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Example: X = R?, S = Half-Spaces
VCH(S) > 2
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Example: X = R?, S = Half-Spaces
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Set Systems in a Model-Theoretic Context
Consider a sorted language £ with sorts indexed by /.
Let M be an L-structure with domains (M; : i € /).
Definition

Given an L-formula ¢(x, y) where x = (x{l, .y x5)and y = (yljl, ...,ytj*),
define

Sy ={9(X,b): be Y}
where X = M x --- x M and Y = M, x --- x M.

It follows that (X,S,) is a set system. To ease notation, we let:

Ty denote 7s,, VC(¢) denote VC(Sy), and  vc(¢) denote ve(Sy).

Similarly, we use 7, for TS, VC*(¢) for VC*(Sy), and vc*(¢) for ve*(Sy).
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Duality in a Model-Theoretic Context

Lemma

The dual shatter function of ¢ is the shatter function of ¢*.
That is w; = Tgx.

Proof: For all n < w, we have

my(n) = max{|S(#(X, b) : b€ B)|: B [Y]"}
— max{[S,(B)| : B € [V]"}
=max{|Sg- N B|: B € [Y]"}
= 74 ().

Corollary

VC*(9) = VC(9*) and ve*(6) = ve(4").
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VC(¢) < w <= VC'(¢) <w

Lemma

VC(¢) < 2VC @)+,

Proof: Suppose VC(¢) > 2", there exists A € [X]?" shattered by Sy.

Let {a, : J C n} enumerate A.

For all i < n, let b; € Y such that M = ¢(ay, b)) < i€ J.

Let B = {b;j:i < n}.

It follows that Sy- shatters B, so VC(¢*) > n. O
Corollary

VC*(¢) < 2VC@)+1,

Corollary
VC(¢) < w <= VC*(¢) < w.
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Key Point from Last Week

In the classical context...

m§(n) is counting 'atoms generated by n sets in S.

In the model-theoretic context...
m5(n) is counting | ¢-types over n parameters.
So by duality...

mg(n) is counting @*-types over n parameters.
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Duality in the Classical Context

Given (X, S) a set system, let M = (X,S,€), and ¢(x,y) be x € y.
It follows that S = Sy, so by definition, ms = 7 and w5 = 7j.
Let X* =& and

S*={{BeS:aeB}:ac X}
={¢*(S,a) :a € X}.
It follows that §* = Sy«, so by definition, s+ = my+ and 5. = 77(’;*.
Definition

We call (X*,S8*) the dual of (X,S).

Lemma

T = msx and Tg. = Ts.

Proof: mg=m) =mp =7+ and 75 =75 =my = Ts.
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Duality in the Classical Context

Corollary
VC*(S) = VC(S*) and vc*(S) = ve(S*).

Corollary
For any set system (X,S), we have

VC(S) < 2VC*(S)+1
and

VCH(S) < 2VeE+L

Corollary
VC(S)<w <<= VC'(S)<w.
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Elementary Properties

Lemma
7y is elementary (i.e., elementarily equivalent L-structures agree on 7y ).

Proof: Given n < w, let o € P(M2. Consider the £-sentence

n a(J)
3yt yn N\ [3X /\@b[ieJ](X,Yi)] :

JCn i=1

Corollary
VC*(¢) and vc*(¢) are elementary.

Corollary
VC(¢) and vc(¢) are elementary.
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NIP Formulae

Let T be a complete L-theory, and let ¢(x,y) € L.

Definition
We say ¢ has the independence property (IP) iff: for some M |= T, there
exists sequences (a; : i < w) C MIXI and (b : J C w) € MW such that

M )qu(a;,b_;) ~— i€
If ¢ is not IP, we say ¢ is NIP.
Lemma
pislP <— V(C(¢)=w.
Proof: Compactness.

Corollary
¢is NIP <— V(C(¢p)<w <= VC'(¢)<w.
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NIP and vc”

Let T be a complete L-theory.
Definition
We say T is NIP iff: every partitioned L-formula is NIP.
Fact: It is sufficient to check all ¢(x,y) with |y| =1 (and |x| > 1).
Open Question: Is it possible for vc(¢) to be irrational in an NIP theory?
Definition
The VC density of T is the function
vel 1w — RZ0U {0}
defined by

veT(n) = sup{ve(9) : d(x,y) € L, ly| = n}
= sup{vc*(¢) : ¢(x,y) € L,|x| = n}.
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NIP and vc”

Lemma

IfveT (n) < oo for all n < w, then T is NIP.
Note: Converse is not true in general; e.g., consider T¢% where T is NIP.
Open Questions:

1 For every language £ and every complete L-theory T, does
veT(1) < oo imply veT (n) < oo for all n < w?

2 If so, is there some bounding function /3, independent of £ and T,
such that v (n) < B(ve' (1), n)?

Roland Walker (UIC) VC Dimension, VC Density, & Sauer-Shelah 2017 54 / 72



Finite Types

Let A(x, y) be a finite set of L-formulae (with free variables x and y).
Definition

The set system generated by A is
S = {¢ <M|X|, b) L d(x,y) €A, be Mlyl}.
The dual shatter function of A is
wh(n) = max{\SA(B)| Be [MM] }
The dual VC density of A is
vea(n) = inf{r e R : 7i(n) = O(n")}.

Fact: w3 and vcj are elementary.
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Defining Schemata

Let A(x,y) C £ and B € M| both be finite. Let p € Sp(B).
Definition
Given a schema

d(y,z) ={dg(y,2) : ¢ € A} C L

and a parameter ¢ € MI?l, we say that d(y, c) defines p iff:
for every ¢ € A and b € B, we have

d(x,b)€p < M E dy(b,c).
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UDTEFES and the VC n Property

Let A(x,y) C L be finite.

Definition
We say A has uniform definability of types over finite sets (UDTFS) with
n parameters iff: there is a finite family F of schemata each of the form

d(y,z1,...,zn) = {dp(y, 21, ..., Zn) : ¢ € A}

with |y| = |z1| = - - - = |z, such that if B C M| is finite and
p(x) € Sa(B), then for some d € F and by, ..., b, € B, d(y, b) defines p.

Definition
An L-structure has the VC n property iff:
all finite A(x,y) C £ with x| = 1 have UDTFS with n parameters.

Fact: UDTFS with n parameters and VC n are elementary properties.
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Uniform Bounds on VC Density

Theorem (5.7)

If M has the VC n property, then every finite A(x,y) C L has UDTFS
with n|x| parameters.

Corollary (5.8a)

If M has the VC n property, then for every finite A(x,y) C L, we have
vc*(A) < n|x|.

Proof: Given A(x, y) finite, there exists finite F witnessing UDTFS with
n|x| parameters. It follows that |Sa(B)| < |F||B|"X.

Corollary (5.8b)

If T is complete and has the VVC n property, then for all m < w, we have
veT(m) < nm.
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Weakly O-Minimal Theories are VC 1

Theorem (6.1)
If T is complete and weakly o-minimal, then T has the VC 1 property.

Proof: Let M |= T, and let A(x,y) C L be finite with |x| = 1.
By Compactness, there exists n < w such that for all ¢ € A and b € MV!,
®(M, b) has at most n maximal convex components.

For all ¢ € A and i < n, there exists ¢;(x, y) € L such that for each
be MW,

$i(M, b) is the ithcomponent of ¢(M, b).

It follows that

ME é(x,y) < \/ oi(x,y).

i<n
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Proof of Theorem (cont.)

For each ¢ € A and i < n, let
¢7(x,y) be Ixo[di(x0,¥) N x < x]
¢7(x,y) be Vxo[di(x0,y) — x < xo]
It follows that
MEdilx,y) & 7(x,y) A =67 (x,y).

If we let W = {¢~, ¢ : ¢ €A, i< n}, each formula in A is
T-equivalent to a boolean combination of 2n formulae in W.

For each 1) € W and b € MW, notice that 1/(M, b) is an initial segment of
M, so Sy is directed.

Lemma 5.2 = W has UDTFS with one parameter.

Lemma 5.5 = A has UDTFS with one parameter.
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Application: RCVF

Let L={+,—,-,0,1,<,]|}.

RCVF (with a proper convex valuation ring) where | is the divisibility
predicate (i.e., alb < v(a) < v(b)) is a complete L-theory.

Cherlin and Dickmann showed RCVF has quantifier elimination and is,
therefore, weakly o-minimal.

Corollary (6.2a)
In RCVF, if A(x,y) C L is finite, then vc*(A) < |x|.

Corollary (6.2b)

veRVF(n) < n for all n < w.
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Application: ACVF g )

Let £={+,—,-,0,1,]}.
ACVF g0y where | is the divisibility predicate is complete in L.
Let R = RCVF (in LU {<}).
Consider R(i) where i = —1 and
a+bilct+di & a°+b*|c?+d°
It follows that R(i) = ACVF gy and is interpretable in R.

Corollary (6.3a)
In ACVF 0,0y, if A(x,y) C L is finite, then vc*(A) < 2|x|.

Corollary (6.3b)

veAVFo0 (n) < 2n, for all n < w.
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Open Questions

1 For every language £ and every complete L-theory T, does
c(1) < oo imply ve(n) < oo for all n < w?
RCVF : Yes ACVF @ 1 7

ACVF(()’O) : Yes ACVF(MP)Z ?

2 If so, is there some bounding function 3, independent of £ and T,
such that ve (n) < B(ve' (1), n)?

RCVF : B(n)=n ACVF@gp) @ ?

ACVF(gg): B(n)=2n  ACVF(,,: ?
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Counting Types

B C MWI.

Let £ be a language, M an L-structure, ¢(x, y) € L with |x| =1, and

n n
= O(n?
on (0) B (d> ()
bis IP
14(B)I ¢ is NIP
Cn?
n=|B|
Roland Walker (UIC)

0 M EACVF o)

[m]

=

VC Dimension, VC Density, & Sauer-Shelah



Regular Pairs

Let G = (V, E) be a finite graph. Fix ¢,6 € [0,1].

Definition

Given A, B C V/, we say the pair (A, B) is (g, d)-regular iff: there exists

a € [0, 1] such that for all nonempty sets A’ C A and B’ C B with
|A’| > 6|A| and |B| > 6|B|, we have |d(A",B") —a| < 5.

A B

i
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Regular Pairs

Let G = (V, E) be a finite graph. Fix ¢,6 € [0,1].
Definition
Given A, B C V, we say the pair (A, B) is (e, d)-regular iff: there exists

a € [0, 1] such that for all nonempty sets A’ C A and B’ C B with
|A’| > 6|A| and |B| > 6|B|, we have |d(A",B") —a| < 5.
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Regular Pairs
Let G = (V, E) be a finite graph. Fix ¢,6 € [0,1].
Definition

Given A, B C V, we say the pair (A, B) is (e, d)-regular iff: there exists
a € [0, 1] such that for all nonempty sets A’ C A and B’ C B with
|A’| > 6|A| and |B| > 6|B|, we have |d(A",B") —a| < 5.

B

d(A,B)=EB — 2. — 001

B
a=0 0=0.2 e =0.25
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Defect

Let P be a finite partition of V. Fix n € [0,1].
Definition
The defect of P is
def. 5(P) := {(A, B) € P?: (A, B) not (g, )-regular},
and we say that P is (e, d,n)-regular iff:

> lAlIBI<alv

(A,B) € def. 5(P)
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Szemerédi Regularity Lemma (without Equipartition)

Lemma

For all €,6,n > 0, there exists M = M(e,d,n) such that any finite graph
has an (g, 6,n)-regular partition with at most M parts.
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Szemerédi Regularity Lemma (without Equipartition)

Lemma

For all €,6,n > 0, there exists M = M(e,d,n) such that any finite graph
has an (g, 6,n)-regular partition with at most M parts.

(Szemerédi 1976) M(c,e,¢) < twra(O(e7°))
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Szemerédi Regularity Lemma (without Equipartition)

Lemma

For all €,6,n > 0, there exists M = M(e,d,n) such that any finite graph
has an (g, 6,n)-regular partition with at most M parts.

(Szemerédi 1976) M(c,e,¢) < twra(O(e7°))

How fast does M grow as § — 07
(Gowers 1997) M(1 — 6/16, 5,1 — 206%/16) > twry(Q(5~1/10))
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Szemerédi Regularity Lemma (without Equipartition)

Lemma

For all €,6,n > 0, there exists M = M(e,d,n) such that any finite graph
has an (g, 6,n)-regular partition with at most M parts.

(Szemerédi 1976) M(c,e,¢) < twra(O(e7°))

How fast does M grow as § — 07
(Gowers 1997) M(1 — 61/18,5,1 — 205%/1¢) > twry(Q(571/19))

How fast does M grow as n — 07
(Conlon-Fox 2012) 3,8 > 0 such that M(g,d,n) > twra(Q(n1))
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Definable Regularity Lemma for NIP Relations

Let Kk > 2 and d € N.

Theorem
There is a constant ¢ = c(k, d) such that IF
@ 46,n>0
o E = ¢(V) for some ¢(vi,...,vk) € Ly and structure M
e VC(E)<d
@ each u; is a Keisler measure on V; which is fap on E

THEN there is an (&, 6, n)-regular partition P of V with 0-1 densities such
that

o ||[P|| < O(v=°) where v = min{e, 6,1}

e for each P;, the parts of P; are definable using a single formula 1;
which is a boolean combination of ¢ depending only on v and ¢.
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Stability

Let deNand RC V x W.

Definition

We say R is d-stable iff: there is not a tree of parameters

{b, : 7 € <92} C W along with a set of leaves {a, : ¢ € 92} C V such
that for any o € 92 and n < d, we have (ay, by|,) € R <= o(n) = 1.

/ b() —~_
\o(o) b(l)
(00) b(OD beg b(.o

NN\ /N /N

74 a,
q(oun) Ko a(cln) ) %w) %o o) [

ao11) F —R(x, by) A R(x, b)) A R(x, bor))
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Definable Regularity Lemma for Stable Relations

Let Kk > 2 and d € N.

Theorem

There is a constant ¢ = c(k, d) such that IF
@c,0>0andn=0
o E = ¢(V) for some ¢(vi,...,vk) € Ly and structure M
e E is d-stable
@ each u; is a Keisler measure on V; which is fap on E

THEN there is an (&, 6, n)-regular partition P of V with 0-1 densities such
that

o ||P|| < O(y=¢) where v = min{e, 6}

e for each P;, the parts of P; are definable using a single formula 1;
which is a boolean combination of ¢ depending only on v and ¢.
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Distality
Let T be a complete NIP theory and I/ a monster model for T.
Definition

We say T is distal iff: for all n > 1, all indiscernible sequences | C U", and
all Dedekind cuts I = L + b + &, if

h+a+h+hk and h+h+b+1h

are both indiscernible, then

Il+a+12+b+/3

is also indiscernible.

a -
\( [

) — € =

:LI 1L _L'S
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Definable Regularity Lemma for Distal NIP Structures

Let T be a complete distal NIP theory and M = T.

Let k > 2 and ¢(v1,...,vk) € L.

Theorem

There is a constant ¢ = ¢(M, ¢) such that IF
eec=0=0andn >0
o E=¢(V)
@ each u; is a Keisler measure on V; which is fap on E

THEN there is an (&, 8, n)-regular partition P of V with 0-1 densities such
that

o [[PIl < O(n=)

@ for each P;, the parts of P; are definable using a single formula ;
which is a boolean combination of ¢ depending only on ¢.
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