VC Dimension, VC Density, and the Sauer-Shelah Dichotomy

Roland Walker

University of Illinois at Chicago

2017

Roland Walker (UIC)

VC Dimension, VC Density, & Sauer-Shelah

2017 1 / 72

References

A. Aschenbrenner, A. Dolich, D. Haskell, H. D. Macpherson, and S. Starchenko, *Vapnik-Chervonenkis density in some theories without the independence property, I*, Trans. Amer. Math. Soc. 368 (2016), 5889-5949.

V. Guingona, *On VC-density in VC-minimal theories*, arXiv:1409.8060 [math.LO].

P. Simon, A Guide to NIP Theories, Cambridge University Press (2015).

A. Chernikov and S. Starchenko, *Definable regularity lemmas for NIP hypergraphs*, arXiv:1607.07701 [math.LO].

Set Systems

Definition

Let X be a set and $S \subseteq \mathcal{P}(X)$. We call the pair (X, S) a set system.

Definition

Given $A \subseteq X$, define

$$\mathcal{S} \cap A = \{B \cap A : B \in \mathcal{S}\}.$$

We say A is shattered by S iff: $S \cap A = \mathcal{P}(A)$.

- 本間 と えき と えき とうき

The Shatter Function and VC Dimension

Definition

```
The function \pi_{\mathcal{S}}: \omega \to \omega given by
```

$$\pi_{\mathcal{S}}(n) = \max\{|\mathcal{S} \cap A| : A \in [X]^n\}$$

is called the *shatter function* of S.

Definition

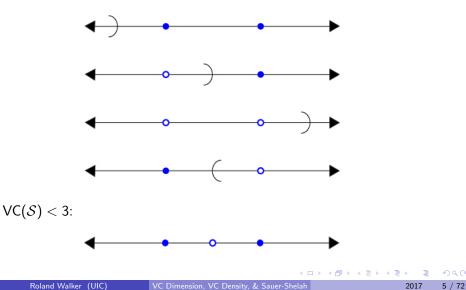
The Vapnik-Chervonenkis (VC) dimension of S is

$$VC(S) = \sup\{n < \omega : S \text{ shatters some } A \in [X]^n\}$$
$$= \sup\{n < \omega : \pi_S(n) = 2^n\}.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

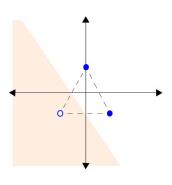
Example: $X = \mathbb{R}$, S = Half-Spaces

 $VC(S) \ge 2$:

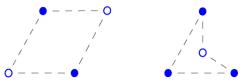


Example: $X = \mathbb{R}^2$, S =Half-Spaces

 $VC(S) \ge 3$:



VC(S) < 4:



э

The Sauer-Shelah Lemma

Let X be a set and $S \subseteq \mathcal{P}(X)$.

Lemma (Sauer-Shelah)

If $VC(S) = d < \omega$, then for all $n \ge d$, we have

$$\pi_{\mathcal{S}}(n) \leq \binom{n}{0} + \cdots + \binom{n}{d} = O(n^d).$$

Proof: Suppose VC(S) = $d < \omega$, and fix n > d. Let $A \in [X]^n$ such that $|S \cap A| = \pi_S(n)$, and let (a_1, \ldots, a_n) enumerate A. Inductively define $S_0, \ldots, S_n \subseteq \mathcal{P}(A)$ as follows:

Let $\mathcal{S}_0 = \mathcal{S} \cap A$.

To construct S_{i+1} , remove a_{i+1} where possible; i.e,

$$\begin{aligned} \mathcal{S}_{i+1} \ &= \ \{B \ : \ B \in \mathcal{S}_i \ \text{and} \ B \setminus \{a_{i+1}\} \in \mathcal{S}_i\} \\ & \cup \ \{B \setminus \{a_{i+1}\} \ : \ B \in \mathcal{S}_i \ \text{and} \ B \setminus \{a_{i+1}\} \notin \mathcal{S}_i\}. \end{aligned}$$

過入 イヨト イヨト ニヨ

Example: $S_0 = S \cap A$.

<i>A</i> = {	a ₁	a ₂	a ₃	<i>a</i> 4	a 5 }
	0	0	0	0	0
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	1	0	0	1	0
	1	1	1	1	0

2017 8 / 72

3

イロン イヨン イヨン イヨン

Example: Constructing S_1 .

<i>A</i> = {	<i>a</i> 1	a 2	a 3	a 4	<i>a</i> 5	}
	0	0	0	0	0	
	0	0	0	0	1	
	0	0	0	1	0	
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	
	0	1	0	0	0	
	0	1	0	1	0	
	0	1	1	0	0	
\Rightarrow	1	0	0	1	0	\Leftarrow
	1	1	1	1	0	

2017 9 / 72

3

(日) (周) (三) (三)

Example: Constructing $S_{1..}$

<i>A</i> = {	<i>a</i> 1	a ₂	a ₃	<i>a</i> 4	<i>a</i> 5	}
	0	0	0	0	0	
	0	0	0	0	1	
\rightarrow	0	0	0	1	0	\leftarrow
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	
	0	1	0	0	0	
	0	1	0	1	0	
	0	1	1	0	0	
\Rightarrow	1	0	0	1	0	\Leftarrow
	1	1	1	1	0	

Example: Constructing S_1 ...

<i>A</i> = {	<i>a</i> 1	a ₂	a ₃	<i>a</i> 4	a 5	}
	0	0	0	0	0	
	0	0	0	0	1	
\rightarrow	0	0	0	1	0	\leftarrow
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	
	0	1	0	0	0	
	0	1	0	1	0	
	0	1	1	0	0	
\Rightarrow	1	0	0	1	0	\Leftarrow
	1	1	1	1	0	

2017 11 / 72

Example: Constructing S_1

$A = \{$	<i>a</i> 1	a ₂	a ₃	a4	a 5	}
	0	0	0	0	0	
	0	0	0	0	1	
	0	0	0	1	0	
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	
	0	1	0	0	0	
	0	1	0	1	0	
	0	1	1	0	0	
	1	0	0	1	0	
\Rightarrow	1	1	1	1	0	\Leftarrow

Example: Constructing S_1

<i>A</i> = {	a 1	a 2	a ₃	a4	<i>a</i> 5	}
	0	0	0	0	0	
	0	0	0	0	1	
	0	0	0	1	0	
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	
	0	1	0	0	0	
	0	1	0	1	0	
	0	1	1	0	0	
	1	0	0	1	0	
\Rightarrow	0	1	1	1	0	\Leftarrow
				< D)	· · · ·	

э

Example: Constructing S_1

<i>A</i> = {	<i>a</i> 1	a 2	a ₃	a 4	a ₅ }
	0	0	0	0	0
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	1	0	0	1	0
	0	1	1	1	0

(日) (同) (三) (三)

Example: Constructing S_2 .

$A = \{$	<i>a</i> 1	a 2	a ₃	a 4	<i>a</i> 5	}
	0 0 0	0 0 0	0 0 0	0 0 1	0 1 0	
	0 0 0	0 0 0	1 1 1	0 0 1	0 1 0	
\Rightarrow	0 0 0 1 0	0 1 1 1 0 1	1 0 1 0 1	1 0 1 0 1 1	1 0 0 0 0 0	¢

2017 15 / 72

Example: Constructing $S_{2..}$

<i>A</i> = {	<i>a</i> 1	a ₂	a ₃	a4	a 5	}
\rightarrow	0	0	0	0	0	\leftarrow
	0	0	0	0	1	
	0	0	0	1	0	
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	
\Rightarrow	0	1	0	0	0	\Leftarrow
	0	1	0	1	0	
	0	1	1	0	0	
	1	0	0	1	0	
	0	1	1	1	0	

Example: Constructing S_2 ...

<i>A</i> = {	a ₁	a 2	a ₃	<i>a</i> 4	a 5	}
\rightarrow	0	0	0	0	0	\leftarrow
	0	0	0	0	1	
	0	0	0	1	0	
	0	0	1	0	0	
	0	0	1	0	1	
	0	0	1	1	0	
	0	0	1	1	1	
\Rightarrow	0	1	0	0	0	\Leftarrow
	0	1	0	1	0	
	0	1	1	0	0	
	1	0	0	1	0	
	0	1	1	1	0	

(日) (同) (三) (三)

Example: Constructing S_2

<i>A</i> = {	<i>a</i> 1	a ₂	a ₃	a 4	a 5 }
	0	0	0	0	0
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	1	0	0	1	0
	0	1	1	1	0

(日) (同) (三) (三)

Example: Constructing S_3 .

<i>A</i> = {	<i>a</i> 1	a 2	a 3	a4	a 5	}
	0 0 0 0	0 0 0	0 0 0 1	0 0 1 0	0 1 0	
	0 0	0 0	1 1	0 1	1 0	
\Rightarrow	0 0 0	0 1 1	1 0 0	1 0 1	1 0 0	\Leftarrow
	0 1 0	1 0 1	1 0 1	0 1 1	0 0 0	

Example: Constructing S_3 ..

<i>A</i> = {	<i>a</i> 1	a 2	a 3	a4	a 5	}
	0 0 0	0 0 0	0 0 0	0 0 1	0 1 0	
	0	0	1	0	0	
	0	0	1	0	1	
ζ.	0	0	1	1	0	,
⇒	0 0	0 1	0	1 0	1 0	¢
	0	1	0	1	0	
	0	1	1	0	0	
	1	0	0	1	0	
	0	1	1	1	0	

2017 20 / 72

Example: Constructing S_3 ...

<i>A</i> = {	<i>a</i> 1	a ₂	a ₃	<i>a</i> 4	a 5 }
	0	0	0	0	0
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	0	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	1	0	0	1	0
	0	1	1	1	0

(日) (周) (三) (三)

Example: Constructing S_4 .

<i>A</i> = {	<i>a</i> 1	a ₂	<i>a</i> 3	<i>a</i> 4	a 5 }
	0	0	0	0	0
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	0	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	1	0	0	0	0
	0	1	1	1	0

2017 22 / 72

Example: Constructing S_5 .

<i>A</i> = {	<i>a</i> 1	<i>a</i> 1	a 3	<i>a</i> 4	a ₅ }
	0	0	0	0	0
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	0	1
	0	0	1	1	0
	0	0	0	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	1	0	0	0	0
	0	1	1	1	0

2017 23 / 72

Back to proof...

Lemma (Sauer-Shelah)

If $VC(S) = d < \omega$, then for all $n \ge d$, we have

$$\pi_{\mathcal{S}}(n) \leq \binom{n}{0} + \cdots + \binom{n}{d} = O(n^d).$$

Proof (continued):

Notice that after stage i + 1, we have the following:

- $|\mathcal{S}_{i+1}| = |\mathcal{S}_i|.$
- Given $A' \subseteq A$, if S_{i+1} shatters A', then S_i shatters A'.
- Given $B \in S_{i+1}$ and $B' \subseteq B \cap \{a_1, \ldots, a_{i+1}\}$, $B' \cup (B \setminus \{a_1, \ldots, a_{i+1}\}) \in S_{i+1}$.

Because of this, any member of S_n has cardinality at most d.

- 4 同 6 4 日 6 4 日 6

VC Density

Definition

The VC density of ${\mathcal S}$ is

$$\mathsf{vc}(\mathcal{S}) = \inf \left\{ r \in \mathbb{R}^{>0} : \pi_{\mathcal{S}}(n) = O(n^r) \right\} = \limsup_{n \to \omega} \frac{\log \pi(n)}{\log n}.$$

Lemma (Sauer-Shelah)

If $VC(S) = d < \omega$, then for all $n \ge d$, we have

$$\pi_{\mathcal{S}}(n) \leq \binom{n}{0} + \cdots + \binom{n}{d} = O(n^d).$$

Corollary

 $vc(\mathcal{S}) \leq VC(\mathcal{S}).$

イロト イ理ト イヨト イヨト 二日

Example: When S is "uniform," VC dimension and VC density agree.

Let X be an infinite set and $S = [X]^{\leq d}$ for some $d < \omega$.

We have

$$\pi_{\mathcal{S}}(n) = \binom{n}{0} + \cdots + \binom{n}{d},$$

SO

$$VC(S) = vc(S) = d.$$

Example: VC dimension is more susceptible to local anomalies than VC density.

Let
$$X = \omega, m < \omega$$
, and $S = \mathcal{P}(m)$.

It follows that

$$\pi_{\mathcal{S}}(n) = egin{cases} 2^n & ext{if } n \leq m \ 2^m & ext{otherwise.} \end{cases}$$

So

$$VC(S) = m$$

and

$$\operatorname{vc}(\mathcal{S}) = \limsup_{n \to \omega} \frac{\log 2^m}{\log n} = 0.$$

Roland Walker (UIC)

The Dual Shatter Function

Definition

Given $A_1, ..., A_n \subseteq X$, let $S(A_1, ..., A_n)$ denote the set of atoms in the Boolean algebra generated by $A_1, ..., A_n$. That is

$$S(A_1, \cdots, A_n) = \left\{ \bigcap_{i=1}^n A_i^{\sigma(i)} : \sigma \in {}^n 2 \right\} \setminus \emptyset$$

where
$$A_i^1 = A_i$$
 and $A_i^0 = X \setminus A_i$.

Definition

The function $\pi^*_{\mathcal{S}}: \omega \to \omega$ given by

$$\pi^*_{\mathcal{S}}(n) = \max\{|S(A_1, ..., A_n)| : A_1, ...A_n \in \mathcal{S}\}$$

is called the *dual shatter function* of S.

Roland Walker (UIC)

2017 28 / 72

Dual VC Dimension and Dual VC Density

Definition

The dual VC dimension of S is

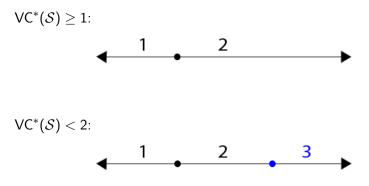
$$\mathsf{VC}^*(\mathcal{S}) = \sup \left\{ n < \omega : \pi^*_{\mathcal{S}}(n) = 2^n
ight\}$$

Definition

The dual VC density of S is

$$\operatorname{vc}^*(\mathcal{S}) = \inf \left\{ r \in \mathbb{R}^{>0} : \pi^*_{\mathcal{S}}(n) = O(n^r) \right\}.$$

Example: $X = \mathbb{R}$, S = Half-Spaces

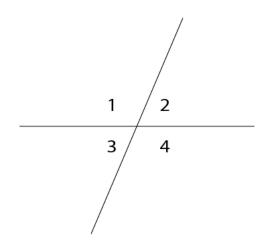


2017 30 / 72

< 回 ト < 三 ト < 三 ト

Example: $X = \mathbb{R}^2$, S = Half-Spaces

 $VC^*(S) \ge 2$:



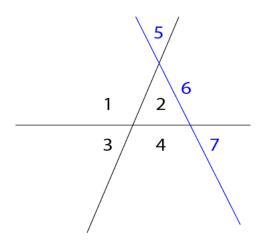
Roland Walker (UIC)

2017 31 / 72

A B A A B A

Example: $X = \mathbb{R}^2$, S =Half-Spaces

 $VC^*(S) < 3$:



Roland Walker (UIC)

2017 32 / 72

∃ → (∃ →

Set Systems in a Model-Theoretic Context

Consider a sorted language \mathcal{L} with sorts indexed by *I*. Let \mathcal{M} be an \mathcal{L} -structure with domains $(M_i : i \in I)$.

Definition

Given an \mathcal{L} -formula $\phi(x, y)$ where $x = (x_1^{i_1}, ..., x_s^{i_s})$ and $y = (y_1^{j_1}, ..., y_t^{j_t})$, define

$$\mathcal{S}_{\phi} = \{\phi(X, b) : b \in Y\}$$

where $X = M_{i_1} \times \cdots \times M_{i_s}$ and $Y = M_{j_1} \times \cdots \times M_{j_t}$.

It follows that (X, S_{ϕ}) is a set system. To ease notation, we let: π_{ϕ} denote $\pi_{S_{\phi}}$, $VC(\phi)$ denote $VC(S_{\phi})$, and $vc(\phi)$ denote $vc(S_{\phi})$.

Similarly, we use π_{ϕ}^* for $\pi_{\mathcal{S}_{\phi}}^*$, VC^{*}(ϕ) for VC^{*}(\mathcal{S}_{ϕ}), and vc^{*}(ϕ) for vc^{*}(\mathcal{S}_{ϕ}).

(□) ▲ □) ▲ 三) ▲ 三) ● ○ ○ ○

The dual shatter function of ϕ is really counting ϕ -types.

By definition, we have $\pi_{\phi}^*(n) = \max \{ |S(\phi(X, b) : b \in B)| : B \in [Y]^n \}.$

Let $B \in [Y]^n$. Recall that

$$S(\phi(X,b):b\in B)=\left\{\bigcap_{b\in B}\phi^{\sigma(b)}(X,b):\sigma\in {}^B2
ight\}\setminus arnothing.$$

There is a bijection

$$S(\phi(X,b):b\in B)\longrightarrow ig\{ ext{tp}_{\phi}(a/B):a\in Xig\}=S_{\phi}(B)$$

given by

$$\bigcap_{b\in B}\phi^{\sigma(b)}(X,b)\longmapsto \left\{\phi^{\sigma(b)}(x,b):b\in B\right\}.$$

It follows that

$$|S(\phi(X,b):b\in B)|=|S_{\phi}(B)|.$$

The Dual of a Formula

Definition

We call a formula $\phi(x; y)$ a partitioned formula with object variable(s) $x = (x_1, ..., x_s)$ and parameter variable(s) $y = (y_1, ..., y_t)$.

Definition

We let $\phi^*(y; x)$ denote the *dual* of $\phi(x; y)$, meaning $\phi^*(y; x)$ is $\phi(x; y)$ but we view y as the object and x as the parameter.

It follows that

$$\mathcal{S}_{\phi^*} = \{\phi^*(Y, a) : a \in X\}$$
$$= \{\phi(a, Y) : a \in X\}.$$

The shatter function of ϕ^* is also counting ϕ -types.

By definition, we have $\pi_{\phi^*}(n) = \max\left\{|\mathcal{S}_{\phi^*} \cap B| : B \in [Y]^n\right\}$.

Let $B \in [Y]^n$. It follows that

$$\mathcal{S}_{\phi^*} \cap B = \{\phi^*(B, a) : a \in X\}$$

= $\{\phi(a, B) : a \in X\}$

There is a bijection

$$\{\phi(a,B): a \in X\} \longrightarrow \{\operatorname{tp}_{\phi}(a/B): a \in X\} = S_{\phi}(B)$$

given by

$$\phi(a,B) \longmapsto \operatorname{tp}_{\phi}(a/B).$$

It follows that

$$|\mathcal{S}_{\phi^*} \cap B| = |\mathcal{S}_{\phi}(B)|.$$

Duality in a Model-Theoretic Context

Lemma

The dual shatter function of ϕ is the shatter function of $\phi^*.$ That is $\pi_\phi^*=\pi_{\phi^*}.$

Proof: For all $n < \omega$, we have

$$\pi_{\phi}^{*}(n) = \max\{|S(\phi(X, b) : b \in B)| : B \in [Y]^{n}\} \\ = \max\{|S_{\phi}(B)| : B \in [Y]^{n}\} \\ = \max\{|S_{\phi^{*}} \cap B| : B \in [Y]^{n}\} \\ = \pi_{\phi^{*}}(n).$$

Corollary

$$\mathsf{VC}^*(\phi) = \mathsf{VC}(\phi^*)$$
 and $\mathsf{vc}^*(\phi) = \mathsf{vc}(\phi^*)$.

$$\mathsf{VC}(\phi) < \omega \iff \mathsf{VC}^*(\phi) < \omega$$

Lemma

 $\mathsf{VC}(\phi) < 2^{\mathsf{VC}^*(\phi)+1}.$

Proof: Suppose VC(ϕ) $\geq 2^n$, there exists $A \in [X]^{2^n}$ shattered by S_{ϕ} . Let $\{a_J : J \subseteq n\}$ enumerate A. For all i < n, let $b_i \in Y$ such that $\mathcal{M} \models \phi(a_J, b_i) \iff i \in J$. Let $B = \{b_i : i < n\}$. It follows that S_{ϕ^*} shatters B, so VC(ϕ^*) $\geq n$.

Corollary

 $\mathsf{VC}^*(\phi) < 2^{\mathsf{VC}(\phi)+1}.$

Corollary VC(ϕ) < $\omega \iff$ VC*(ϕ) < ω .

2017 38 / 72

(日) (四) (王) (王) (王)

VC Dimension, VC Density, and the Sauer-Shelah Dichotomy

Roland Walker

University of Illinois at Chicago

2017

Roland Walker (UIC)

VC Dimension, VC Density, & Sauer-Shelah

2017 39 / 72

The Dual Shatter Function

Definition

Given $A_1, ..., A_n \subseteq X$, let $S(A_1, ..., A_n)$ denote the set of atoms in the Boolean algebra generated by $A_1, ..., A_n$. That is

$$S(A_1, \cdots, A_n) = \left\{ \bigcap_{i=1}^n A_i^{\sigma(i)} : \sigma \in {}^n 2 \right\} \setminus \emptyset$$

where
$$A_i^1 = A_i$$
 and $A_i^0 = X \setminus A_i$.

Definition

The function $\pi^*_{\mathcal{S}}: \omega \to \omega$ given by

$$\pi^*_{\mathcal{S}}(n) = \max\{|S(A_1, ..., A_n)| : A_1, ..., A_n \in \mathcal{S}\}$$

is called the *dual shatter function* of S.

Roland Walker (UIC)

2017 40 / 72

Dual VC Dimension and Dual VC Density

Definition

The dual VC dimension of S is

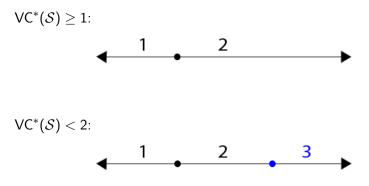
$$\mathsf{VC}^*(\mathcal{S}) = \sup \left\{ n < \omega : \pi^*_{\mathcal{S}}(n) = 2^n
ight\}$$

Definition

The dual VC density of S is

$$\operatorname{vc}^*(\mathcal{S}) = \inf \left\{ r \in \mathbb{R}^{>0} : \pi^*_{\mathcal{S}}(n) = O(n^r) \right\}.$$

Example: $X = \mathbb{R}$, S = Half-Spaces

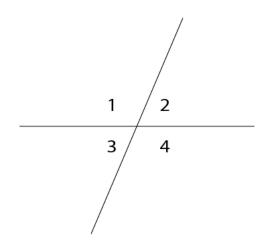


2017 42 / 72

< 回 > < 三 > < 三 >

Example: $X = \mathbb{R}^2$, S = Half-Spaces

 $VC^*(S) \ge 2$:

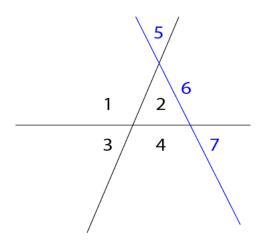


Roland Walker (UIC)

A B A A B A

Example: $X = \mathbb{R}^2$, S =Half-Spaces

 $VC^*(S) < 3$:



Roland Walker (UIC)

2017 44 / 72

3 K K 3 K

Set Systems in a Model-Theoretic Context

Consider a sorted language \mathcal{L} with sorts indexed by *I*. Let \mathcal{M} be an \mathcal{L} -structure with domains $(M_i : i \in I)$.

Definition

Given an \mathcal{L} -formula $\phi(x, y)$ where $x = (x_1^{i_1}, ..., x_s^{i_s})$ and $y = (y_1^{j_1}, ..., y_t^{j_t})$, define

$$\mathcal{S}_{\phi} = \{\phi(X, b) : b \in Y\}$$

where $X = M_{i_1} \times \cdots \times M_{i_s}$ and $Y = M_{j_1} \times \cdots \times M_{j_t}$.

It follows that (X, S_{ϕ}) is a set system. To ease notation, we let: π_{ϕ} denote $\pi_{S_{\phi}}$, $VC(\phi)$ denote $VC(S_{\phi})$, and $vc(\phi)$ denote $vc(S_{\phi})$.

Similarly, we use π_{ϕ}^* for $\pi_{\mathcal{S}_{\phi}}^*$, VC^{*}(ϕ) for VC^{*}(\mathcal{S}_{ϕ}), and vc^{*}(ϕ) for vc^{*}(\mathcal{S}_{ϕ}).

(□) ▲ □) ▲ 三) ▲ 三) ● ○ ○ ○

Duality in a Model-Theoretic Context

Lemma

The dual shatter function of ϕ is the shatter function of ϕ^* . That is $\pi_{\phi}^* = \pi_{\phi^*}$.

Proof: For all $n < \omega$, we have

$$\pi_{\phi}^{*}(n) = \max\{|S(\phi(X, b) : b \in B)| : B \in [Y]^{n}\} \\ = \max\{|S_{\phi}(B)| : B \in [Y]^{n}\} \\ = \max\{|S_{\phi^{*}} \cap B| : B \in [Y]^{n}\} \\ = \pi_{\phi^{*}}(n).$$

Corollary

$$\mathsf{VC}^*(\phi) = \mathsf{VC}(\phi^*)$$
 and $\mathsf{vc}^*(\phi) = \mathsf{vc}(\phi^*)$.

$$\mathsf{VC}(\phi) < \omega \iff \mathsf{VC}^*(\phi) < \omega$$

Lemma

 $\mathsf{VC}(\phi) < 2^{\mathsf{VC}^*(\phi)+1}.$

Proof: Suppose VC(ϕ) $\geq 2^n$, there exists $A \in [X]^{2^n}$ shattered by S_{ϕ} . Let $\{a_J : J \subseteq n\}$ enumerate A. For all i < n, let $b_i \in Y$ such that $\mathcal{M} \models \phi(a_J, b_i) \iff i \in J$. Let $B = \{b_i : i < n\}$. It follows that S_{ϕ^*} shatters B, so VC(ϕ^*) $\geq n$.

Corollary

 $\mathsf{VC}^*(\phi) < 2^{\mathsf{VC}(\phi)+1}.$

Corollary VC(ϕ) < $\omega \iff$ VC*(ϕ) < ω .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Key Point from Last Week

In the classical context...

```
\pi^*_{\mathcal{S}}(n) is counting atoms generated by n sets in \mathcal{S}.
```

In the model-theoretic context...

 $\pi_{\phi}^{*}(n)$ is counting ϕ -types over n parameters.

So by duality ...

 $\pi_{\phi}(n)$ is counting ϕ^* -types over *n* parameters.

Duality in the Classical Context

Given (X, S) a set system, let $\mathcal{M} = (X, S, \in)$, and $\phi(x, y)$ be $x \in y$. It follows that $S = S_{\phi}$, so by definition, $\pi_{S} = \pi_{\phi}$ and $\pi_{S}^{*} = \pi_{\phi}^{*}$. Let $X^{*} = S$ and

$$\mathcal{S}^* = \{\{B \in \mathcal{S} : a \in B\} : a \in X\} \\ = \{\phi^*(\mathcal{S}, a) : a \in X\}.$$

It follows that $S^* = S_{\phi^*}$, so by definition, $\pi_{S^*} = \pi_{\phi^*}$ and $\pi^*_{S^*} = \pi^*_{\phi^*}$.

Definition

We call (X^*, S^*) the *dual* of (X, S).

Lemma

$$\pi_{\mathcal{S}}^* = \pi_{\mathcal{S}^*}$$
 and $\pi_{\mathcal{S}^*}^* = \pi_{\mathcal{S}^*}$

Proof: $\pi_{\mathcal{S}}^* = \pi_{\phi}^* = \pi_{\phi^*} = \pi_{\mathcal{S}^*}$ and $\pi_{\mathcal{S}^*}^* = \pi_{\phi^*}^* = \pi_{\phi} = \pi_{\mathcal{S}}$.

Duality in the Classical Context

Corollary
VC*(
$$S$$
) = VC(S *) and vc*(S) = vc(S *).

Corollary

```
For any set system (X, S), we have
```

 $\mathsf{VC}(\mathcal{S}) < 2^{\mathsf{VC}^*(\mathcal{S})+1}$

and

$$\mathsf{VC}^*(\mathcal{S}) < 2^{\mathsf{VC}(\mathcal{S})+1}.$$

Corollary

 $\mathsf{VC}(\mathcal{S}) < \omega \quad \Longleftrightarrow \quad \mathsf{VC}^*(\mathcal{S}) < \omega.$

Elementary Properties

Lemma

 π_{ϕ}^* is elementary (i.e., elementarily equivalent \mathcal{L} -structures agree on π_{ϕ}^*).

Proof: Given $n < \omega$, let $\sigma \in \mathcal{P}^{(n)}$ 2. Consider the \mathcal{L} -sentence

$$\exists y_1, ..., y_n \bigwedge_{J \subseteq n} \left[\exists x \bigwedge_{i=1}^n \phi^{[i \in J]}(x, y_i) \right]^{\sigma(J)}$$

Corollary

 $VC^*(\phi)$ and $vc^*(\phi)$ are elementary.

Corollary $VC(\phi)$ and $vc(\phi)$ are elementary.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

.

NIP Formulae

Let T be a complete \mathcal{L} -theory, and let $\phi(x, y) \in \mathcal{L}$.

Definition

We say ϕ has the *independence property (IP)* iff: for some $\mathcal{M} \models T$, there exists sequences $(a_i : i < \omega) \subseteq \mathcal{M}^{|x|}$ and $(b_J : J \subseteq \omega) \subseteq \mathcal{M}^{|y|}$ such that

$$\mathcal{M} \models \phi(\mathbf{a}_i, \mathbf{b}_J) \quad \Longleftrightarrow \quad i \in J.$$

If ϕ is not IP, we say ϕ is *NIP*.

Lemma

 ϕ is IP \iff VC $(\phi) = \omega$.

Proof: Compactness.

Corollary

 $\phi \text{ is NIP} \quad \Longleftrightarrow \quad \mathsf{VC}(\phi) < \omega \quad \Longleftrightarrow \quad \mathsf{VC}^*(\phi) < \omega.$

NIP and vc^{T}

Let T be a complete \mathcal{L} -theory.

Definition

We say T is *NIP* iff: every partitioned \mathcal{L} -formula is NIP.

Fact: It is sufficient to check all $\phi(x, y)$ with |y| = 1 (and $|x| \ge 1$).

Open Question: Is it possible for $vc(\phi)$ to be irrational in an NIP theory?

Definition

The VC density of T is the function

$$\mathsf{vc}^{\mathsf{T}}:\omega\longrightarrow\mathbb{R}^{\geq 0}\cup\{\infty\}$$

defined by

$$vc^{\mathsf{T}}(n) = \sup\{vc(\phi) : \phi(x, y) \in \mathcal{L}, |y| = n\}$$
$$= \sup\{vc^{*}(\phi) : \phi(x, y) \in \mathcal{L}, |x| = n\}.$$

- E - - E -

NIP and $vc^{\mathcal{T}}$

Lemma

If $vc^T(n) < \infty$ for all $n < \omega$, then T is NIP.

Note: Converse is not true in general; e.g., consider T^{eq} where T is NIP.

Open Questions:

- 1 For every language \mathcal{L} and every complete \mathcal{L} -theory T, does $\operatorname{vc}^{T}(1) < \infty$ imply $\operatorname{vc}^{T}(n) < \infty$ for all $n < \omega$?
- 2 If so, is there some bounding function β , independent of \mathcal{L} and \mathcal{T} , such that $vc^{T}(n) < \beta(vc^{T}(1), n)$?

Finite Types

Let $\Delta(x, y)$ be a finite set of \mathcal{L} -formulae (with free variables x and y).

Definition

The set system generated by Δ is

$$\mathcal{S}_{\Delta} = \left\{ \phi\left(M^{|x|}, b\right) : \phi(x, y) \in \Delta, \ b \in M^{|y|} \right\}$$

The dual shatter function of Δ is

$$\pi^*_\Delta(n) = \max\left\{ |S_\Delta(B)| : B \in \left[M^{|y|}
ight]^n
ight\}.$$

The dual VC density of Δ is

$$\mathsf{vc}^*_\Delta(n) = \inf\{r \in \mathbb{R}^{>0} : \pi^*_\Delta(n) = O(n^r)\}.$$

Fact: π^*_Δ and vc^*_Δ are elementary.

Defining Schemata

Let $\Delta(x, y) \subseteq \mathcal{L}$ and $B \subseteq M^{|y|}$ both be finite. Let $p \in S_{\Delta}(B)$.

Definition

Given a schema

$$d(y,z) = \{d_{\phi}(y,z): \phi \in \Delta\} \subseteq \mathcal{L}$$

and a parameter $c \in M^{|z|}$, we say that d(y, c) defines p iff: for every $\phi \in \Delta$ and $b \in B$, we have

$$\phi(x,b)\in p\quad\Longleftrightarrow\quad\mathcal{M}\models d_{\phi}(b,c).$$

UDTFS and the VC n Property

Let $\Delta(x, y) \subseteq \mathcal{L}$ be finite.

Definition

We say Δ has uniform definability of types over finite sets (UDTFS) with *n* parameters iff: there is a finite family \mathcal{F} of schemata each of the form

$$d(y, z_1, ..., z_n) = \{d_{\phi}(y, z_1, ..., z_n) : \phi \in \Delta\}$$

with $|y| = |z_1| = \cdots = |z_n|$ such that if $B \subseteq M^{|y|}$ is finite and $p(x) \in S_{\Delta}(B)$, then for some $d \in \mathcal{F}$ and $b_1, \dots, b_n \in B$, $d(y, \overline{b})$ defines p.

Definition

An \mathcal{L} -structure has the *VC n property* iff: all finite $\Delta(x, y) \subseteq \mathcal{L}$ with |x| = 1 have UDTFS with *n* parameters.

Fact: UDTFS with n parameters and VC n are elementary properties.

(ロ) (同) (ヨ) (ヨ) … ヨ

Uniform Bounds on VC Density

Theorem (5.7)

If \mathcal{M} has the VC n property, then every finite $\Delta(x, y) \subseteq \mathcal{L}$ has UDTFS with n|x| parameters.

Corollary (5.8a)

If \mathcal{M} has the VC n property, then for every finite $\Delta(x, y) \subseteq \mathcal{L}$, we have $\mathsf{vc}^*(\Delta) \leq n|x|$.

Proof: Given $\Delta(x, y)$ finite, there exists finite \mathcal{F} witnessing UDTFS with n|x| parameters. It follows that $|S_{\Delta}(B)| \leq |\mathcal{F}||B|^{n|x|}$.

Corollary (5.8b)

If T is complete and has the VC n property, then for all $m < \omega$, we have $vc^{T}(m) \leq nm$.

イロト イポト イヨト イヨト 二日

Weakly O-Minimal Theories are VC 1

Theorem (6.1)

If T is complete and weakly o-minimal, then T has the VC 1 property.

Proof: Let $\mathcal{M} \models \mathcal{T}$, and let $\Delta(x, y) \subseteq \mathcal{L}$ be finite with |x| = 1.

By Compactness, there exists $n < \omega$ such that for all $\phi \in \Delta$ and $b \in M^{|y|}$,

 $\phi(M, b)$ has at most *n* maximal convex components.

For all $\phi \in \Delta$ and i < n, there exists $\phi_i(x, y) \in \mathcal{L}$ such that for each $b \in M^{|y|}$,

 $\phi_i(M, b)$ is the *i*th component of $\phi(M, b)$.

It follows that

$$\mathcal{M} \models \phi(x, y) \leftrightarrow \bigvee_{i < n} \phi_i(x, y).$$

Proof of Theorem (cont.)

For each $\phi \in \Delta$ and i < n, let

$$egin{array}{lll} \phi_i^\leq(x,y) & ext{be} & \exists x_0 \left[\phi_i(x_0,y) \land x \leq x_0
ight] \ \phi_i^<(x,y) & ext{be} & orall x_0 \left[\phi_i(x_0,y)
ightarrow x < x_0
ight]. \end{array}$$

It follows that

$$\mathcal{M} \models \phi_i(x,y) \quad \leftrightarrow \quad \phi_i^{\leq}(x,y) \land \neg \phi_i^{<}(x,y).$$

If we let $\Psi = \{\phi_i^{\leq}, \phi_i^{\leq} : \phi \in \Delta, i < n\}$, each formula in Δ is *T*-equivalent to a boolean combination of 2n formulae in Ψ .

For each $\psi \in \Psi$ and $b \in M^{|y|}$, notice that $\psi(M, b)$ is an initial segment of M, so S_{Ψ} is directed.

Lemma 5.2 $\Rightarrow \Psi$ has UDTFS with one parameter.

Lemma 5.5 $\Rightarrow \Delta$ has UDTFS with one parameter.

Application: RCVF

Let $\mathcal{L} = \{+, -, \cdot, 0, 1, <, |\}.$

RCVF (with a proper convex valuation ring) where | is the divisibility predicate (i.e., $a|b \Leftrightarrow v(a) \leq v(b)$) is a complete \mathcal{L} -theory.

Cherlin and Dickmann showed RCVF has quantifier elimination and is, therefore, weakly *o*-minimal.

Corollary (6.2a) In RCVF, if $\Delta(x, y) \subseteq \mathcal{L}$ is finite, then $vc^*(\Delta) \le |x|$.

Corollary (6.2b) $vc^{RCVF}(n) \le n \text{ for all } n < \omega.$

Application: $ACVF_{(0,0)}$

Let $\mathcal{L} = \{+\,,-\,,\cdot\,,0\,,1\,,|\}.$

ACVF_(0,0) where | is the divisibility predicate is complete in \mathcal{L} . Let $R \models \mathsf{RCVF}$ (in $\mathcal{L} \cup \{<\}$).

Consider R(i) where $i^2 = -1$ and

$$a + bi | c + di \Leftrightarrow a^2 + b^2 | c^2 + d^2.$$

It follows that $R(i) \models ACVF_{(0,0)}$ and is interpretable in R.

Corollary (6.3a) In ACVF_(0,0), if $\Delta(x, y) \subseteq \mathcal{L}$ is finite, then $vc^*(\Delta) \le 2|x|$.

Corollary (6.3b) vc^{ACVF_(0,0)(n) $\leq 2n$, for all $n < \omega$.}

Open Questions

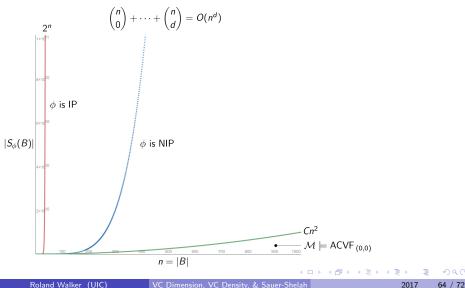
1 For every language \mathcal{L} and every complete \mathcal{L} -theory T, does $\mathsf{vc}^{T}(1) < \infty$ imply $\mathsf{vc}^{T}(n) < \infty$ for all $n < \omega$?

- 2 If so, is there some bounding function β , independent of \mathcal{L} and \mathcal{T} , such that $vc^{T}(n) < \beta(vc^{T}(1), n)$?
 - $\begin{aligned} \mathsf{RCVF} &: \ \beta(n) = n & \mathsf{ACVF}_{(0,p)} : \ ? \\ \mathsf{ACVF}_{(0,0)} : \ \beta(n) = 2n & \mathsf{ACVF}_{(p,p)} : \ ? \end{aligned}$

・聞き くほき くほき 二日

Counting Types

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L} -structure, $\phi(x, y) \in \mathcal{L}$ with |x| = 1, and $B \subseteq M^{|y|}$.

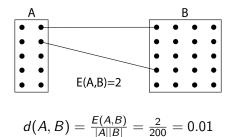


Regular Pairs

Let G = (V, E) be a finite graph. Fix $\varepsilon, \delta \in [0, 1]$.

Definition

Given $A, B \subseteq V$, we say the pair (A, B) is (ε, δ) -regular iff: there exists $\alpha \in [0, 1]$ such that for all nonempty sets $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge \delta |A|$ and $|B'| \ge \delta |B|$, we have $|d(A', B') - \alpha| \le \frac{\varepsilon}{2}$.

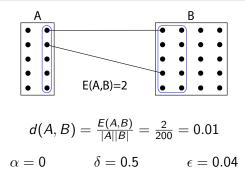


Regular Pairs

Let G = (V, E) be a finite graph. Fix $\varepsilon, \delta \in [0, 1]$.

Definition

Given $A, B \subseteq V$, we say the pair (A, B) is (ε, δ) -regular iff: there exists $\alpha \in [0, 1]$ such that for all nonempty sets $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge \delta |A|$ and $|B'| \ge \delta |B|$, we have $|d(A', B') - \alpha| \le \frac{\varepsilon}{2}$.

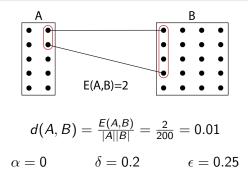


Regular Pairs

Let G = (V, E) be a finite graph. Fix $\varepsilon, \delta \in [0, 1]$.

Definition

Given $A, B \subseteq V$, we say the pair (A, B) is (ε, δ) -regular iff: there exists $\alpha \in [0, 1]$ such that for all nonempty sets $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge \delta |A|$ and $|B'| \ge \delta |B|$, we have $|d(A', B') - \alpha| \le \frac{\varepsilon}{2}$.



Defect

Let P be a finite partition of V. Fix $\eta \in [0, 1]$.

Definition

The *defect* of P is

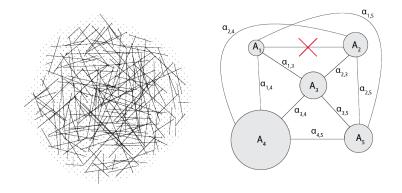
$$\mathsf{def}_{arepsilon,\delta}(\mathsf{P}) \mathrel{\mathop:}= \{(\mathsf{A},\mathsf{B})\in\mathsf{P}^2:(\mathsf{A},\mathsf{B}) ext{ not } (arepsilon,\delta) ext{-regular}\},$$

and we say that *P* is $(\varepsilon, \delta, \eta)$ -regular iff:

$$\sum_{(A,B) \ \in \ \mathsf{def}_{\varepsilon,\delta}(P)} |A| |B| \leq \eta |V|^2$$

Lemma

For all ε , δ , $\eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite graph has an $(\varepsilon, \delta, \eta)$ -regular partition with at most M parts.



Lemma

For all ε , δ , $\eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite graph has an $(\varepsilon, \delta, \eta)$ -regular partition with at most M parts.

(Szemerédi 1976) $M(\varepsilon, \varepsilon, \varepsilon) \leq \operatorname{twr}_2(O(\varepsilon^{-5}))$

Lemma

For all ε , δ , $\eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite graph has an $(\varepsilon, \delta, \eta)$ -regular partition with at most M parts.

(Szemerédi 1976) $M(\varepsilon, \varepsilon, \varepsilon) \leq \operatorname{twr}_2(O(\varepsilon^{-5}))$

 $\frac{\text{How fast does } M \text{ grow as } \delta \to 0?}{(\text{Gowers 1997}) \ M(1 - \delta^{1/16}, \delta, 1 - 20\delta^{1/16}) \geq \mathsf{twr}_2(\Omega(\delta^{-1/16}))}$

Lemma

For all ε , δ , $\eta > 0$, there exists $M = M(\varepsilon, \delta, \eta)$ such that any finite graph has an $(\varepsilon, \delta, \eta)$ -regular partition with at most M parts.

(Szemerédi 1976) $M(\varepsilon, \varepsilon, \varepsilon) \leq \operatorname{twr}_2(O(\varepsilon^{-5}))$

 $\frac{\text{How fast does } M \text{ grow as } \delta \to 0?}{(\text{Gowers 1997}) \ M(1 - \delta^{1/16}, \delta, 1 - 20\delta^{1/16}) \ge \mathsf{twr}_2(\Omega(\delta^{-1/16}))}$

 $\label{eq:constraint} \begin{array}{l} \displaystyle \frac{\text{How fast does } M \text{ grow as } \eta \to 0?}{(\text{Conlon-Fox 2012}) \exists \ \varepsilon, \delta > 0 \text{ such that } M(\varepsilon, \delta, \eta) \geq \text{twr}_2(\Omega(\eta^{-1})) \end{array}$

Definable Regularity Lemma for NIP Relations

Let $k \geq 2$ and $d \in \mathbb{N}$.

Theorem

There is a constant c = c(k, d) such that IF

- $\varepsilon, \delta, \eta > 0$
- $E = \phi(\overline{V})$ for some $\phi(v_1, \dots, v_k) \in \mathcal{L}_M$ and structure \mathcal{M}
- VC(E) ≤ d

• each μ_i is a Keisler measure on V_i which is fap on ETHEN there is an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} of \overline{V} with 0-1 densities such that

- $\|\overline{P}\| \leq O(\gamma^{-c})$ where $\gamma = \min\{\varepsilon, \delta, \eta\}$
- for each P_i, the parts of P_i are definable using a single formula ψ_i which is a boolean combination of φ depending only on γ and φ.

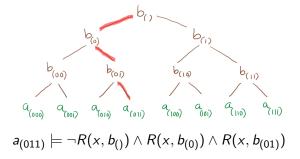
・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Stability

Let $d \in \mathbb{N}$ and $R \subseteq V \times W$.

Definition

We say *R* is *d*-stable iff: there is <u>not</u> a tree of parameters $\{b_{\tau} : \tau \in {}^{<d}2\} \subseteq W$ along with a set of leaves $\{a_{\sigma} : \sigma \in {}^{d}2\} \subseteq V$ such that for any $\sigma \in {}^{d}2$ and n < d, we have $(a_{\sigma}, b_{\sigma|_{n}}) \in R \iff \sigma(n) = 1$.



Definable Regularity Lemma for Stable Relations

Let $k \geq 2$ and $d \in \mathbb{N}$.

Theorem

There is a constant c = c(k, d) such that IF

- $\varepsilon, \delta > 0$ and $\eta = 0$
- $E = \phi(\overline{V})$ for some $\phi(v_1, \dots, v_k) \in \mathcal{L}_M$ and structure \mathcal{M}
- E is d-stable

• each μ_i is a Keisler measure on V_i which is fap on ETHEN there is an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} of \overline{V} with 0-1 densities such that

- $\|\overline{P}\| \leq O(\gamma^{-c})$ where $\gamma = \min\{\varepsilon, \delta\}$
- for each P_i, the parts of P_i are definable using a single formula ψ_i which is a boolean combination of φ depending only on γ and φ.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Distality

Let T be a complete NIP theory and \mathcal{U} a monster model for T.

Definition

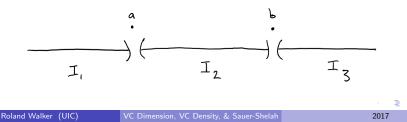
We say T is distal iff: for all $n \ge 1$, all indiscernible sequences $I \subseteq U^n$, and all Dedekind cuts $I = I_1 + I_2 + I_3$, if

$$I_1 + a + I_2 + I_3$$
 and $I_1 + I_2 + b + I_3$

are both indiscernible, then

$$I_1 + a + I_2 + b + I_3$$

is also indiscernible.



71 / 72

Definable Regularity Lemma for Distal NIP Structures

Let T be a complete distal NIP theory and $\mathcal{M} \models T$.

Let $k \geq 2$ and $\phi(v_1, \ldots, v_k) \in \mathcal{L}_M$.

Theorem

There is a constant $c = c(\mathcal{M}, \phi)$ such that IF

•
$$\varepsilon = \delta = 0$$
 and $\eta > 0$

•
$$E = \phi(\overline{V})$$

• each μ_i is a Keisler measure on V_i which is fap on E THEN there is an $(\varepsilon, \delta, \eta)$ -regular partition \overline{P} of \overline{V} with 0-1 densities such that

•
$$\|\overline{P}\| \leq O(\eta^{-c})$$

• for each P_i , the parts of P_i are definable using a single formula ψ_i which is a boolean combination of ϕ depending only on ϕ .